Answer:
you can use any 2 you want. like (10,60) and (5,40)
Step-by-step explanation:
Answer:
Step-by-step explanation:

<h2 /><h2>
<u>Consider</u></h2>

<h2>
<u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>




So, on substituting all these values, we get




<h2>Hence,</h2>

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h2>ADDITIONAL INFORMATION :-</h2>
Sign of Trigonometric ratios in Quadrants
- sin (90°-θ) = cos θ
- cos (90°-θ) = sin θ
- tan (90°-θ) = cot θ
- csc (90°-θ) = sec θ
- sec (90°-θ) = csc θ
- cot (90°-θ) = tan θ
- sin (90°+θ) = cos θ
- cos (90°+θ) = -sin θ
- tan (90°+θ) = -cot θ
- csc (90°+θ) = sec θ
- sec (90°+θ) = -csc θ
- cot (90°+θ) = -tan θ
- sin (180°-θ) = sin θ
- cos (180°-θ) = -cos θ
- tan (180°-θ) = -tan θ
- csc (180°-θ) = csc θ
- sec (180°-θ) = -sec θ
- cot (180°-θ) = -cot θ
- sin (180°+θ) = -sin θ
- cos (180°+θ) = -cos θ
- tan (180°+θ) = tan θ
- csc (180°+θ) = -csc θ
- sec (180°+θ) = -sec θ
- cot (180°+θ) = cot θ
- sin (270°-θ) = -cos θ
- cos (270°-θ) = -sin θ
- tan (270°-θ) = cot θ
- csc (270°-θ) = -sec θ
- sec (270°-θ) = -csc θ
- cot (270°-θ) = tan θ
- sin (270°+θ) = -cos θ
- cos (270°+θ) = sin θ
- tan (270°+θ) = -cot θ
- csc (270°+θ) = -sec θ
- sec (270°+θ) = cos θ
- cot (270°+θ) = -tan θ
Answer:
Step-by-step explanation:
f(x) = 1.8x is a linear function and does not model the growth of bacteria. Perhaps you meant f(x) = 1.8^x, which is an exponential function whose initial value is 1. Please ensure that you have copied down this problem exactly as it was presented.
Convert the dose into mg / lb
1 lb = .45 Kg
so the does = 6 * .45 = 2.7 mg/lb
so the daily dose of the patient is 93 * 2.7 = 251.1 mg
injections are available in 50mg per mL
to calculate the daily dose in mL 251.1 / 50 = 5 mL
Raj’s bathtub is clogged and is draining at a rate of 1.5 gallons of water per minute. The table shows that the amount of water remaining in the bathtub, y, is a function of the time in minutes, x, that it has been draining.
What is the range of this function?
all real numbers such that y ≤ 40
all real numbers such that y ≥ 0
all real numbers such that 0 ≤ y ≤ 40
all real numbers such that 37.75 ≤ y ≤ 40