The square root of 1764 using perfect factors is 42
<h3>How to determine the
square root using
perfect factors?</h3>
The number is given as:
1764
Rewrite as
x^2 = 1764
Express 1764 as the product of its factors
x^2 = 2 * 2 * 3 * 3 * 7 * 7
Express as squares
x^2 = 2^2 * 3^2 * 7^2
Take the square root of both sides
x = 2 * 3 * 7
Evaluate the product
x = 42
Hence, the square root of 1764 using perfect factors is 42
Read more about perfect factors at
brainly.com/question/1538726
#SPJ1
Answer:

And then replacing in the total probability formula we got:

And rounded we got 
That represent the probability that it rains over the weekend (either Saturday or Sunday)
Step-by-step explanation:
We can define the following notaton for the events:
A = It rains over the Saturday
B = It rains over the Sunday
We have the probabilities for these two events given:

And we are interested on the probability that it rains over the weekend (either Saturday or Sunday), so we want to find this probability:

And for this case we can use the total probability rule given by:

And since we are assuming the events independent we can find the probability of intersection like this:

And then replacing in the total probability formula we got:

And rounded we got 
That represent the probability that it rains over the weekend (either Saturday or Sunday)
Answer:
35.733
Step-by-step explanation:
have a common denominator then do the math
KSKDWKDKSODMEMFKSCK HHHHhhhHhHhHhHhhsenfjsockwmf