Answer:
+131Joules
Explanation:
Energy can be expressed using below expresion.
ΔE = (q + w).........eqn(1)
q will be + be if heat is gained hence, q= 240 J
work "w" will be - ve if work is done by the system, hence w= -109 J
Then substitute into eqn(1)
Change in Internal energy=
= (240 -109 )
= +131J
To answer this problem, we will use the equations of motions.
Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground
Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.
The centripetal acceleration is 
Explanation:
For an object in uniform circular motion, the centripetal acceleration is given by

where
v is the speed of the object
r is the radius of the circle
The speed of the object is equal to the ratio between the length of the circumference (
) and the period of revolution (T), so it can be rewritten as

Therefore we can rewrite the acceleration as

For the particle in this problem,
r = 2.06 cm = 0.0206 m
While it makes 4 revolutions each second, so the period is

Substituting into the equation, we find the acceleration:

Learn more about centripetal acceleration:
brainly.com/question/2562955
#LearnwithBrainly
Answer:
Regular reflection
Explanation:
- Reflection is the phenomenon that occurs when a light wave hits the interface between two different mediums and it bounces off back into the same medium. The angle of reflection (measured between the reflected ray and the perpendicular to the interface) is equal to the angle of incidence (measured between the incident ray and the perpendicular to the interface).
There are two different types of reflection:
- Regular reflection: this occurs when the interface between the two mediums is smooth (such as in the case of the still lake), so all the parallel light waves (which have same angle of incidence) are reflected exactly with the same angle of reflection (so, they come out all with same direction)
- Diffuse reflection: this occurs when the interface between the two mediums is not smooth, so each light ray is reflected with a different angle because it hits the interface with a different angle of incidence.
Therefore, in the case of the still lake, the correct answer is regular reflection.