Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Answer:
The current will decrease.
Explanation:
When another bulb is added, the resistance is going to increase. Keep in mind that the current is inversely proportional to the resistance (<em>Ohm's law: R= </em><em>V</em><em>/</em><em>I</em><em> </em><em>).</em> Therefore when the resistance increase, the current running in the circuit will decrease.
Answer:
16 male students, 11 female students
Answer:

Explanation:
Regardless of the initial velocity of the pebble, the acceleration of the pebble is equal to the gravitational acceleration which is equal to 9.8 m/s2 towards downwards direction.
This can be shown by Newton's Second Law. According to the law, the net force applied on an object is equal to mass times acceleration of that object.
During the downward motion, the only force acting on the pebble is the gravitational force, hence its acceleration is equal to gravitational acceleration.