If the circuit is open, then there will be no light or sound. No current will flow and no air will move.
<span>light amplification by stimulated emission of radiation
</span>
Answer:
Required time, t = 0.84 seconds
Explanation:
It is given that,
Initial speed of an object, u = 22 m/s
Final velocity of an object, v = 27 m/s
Acceleration, a = 5.93 m/s²
We have to find the time required for an object to go a speed of 22 m/s to a speed of 27 m/s. It can be solved by using first equation of motion as:

Where
t = time


t = 0.84 seconds
Hence, the time required for an object is 0.84 seconds.
Answer:
16 ms2 is the answer for this question
Answer:
a. keeps its speed for a short while, then slows and stops. slows steadily until it stops.
Explanation:
Since the tension in the rope, t is greater than the kinetic friction fk, the box is moving forward because there is a net force on it. That is, t - fk = f = ma.
Since there is a net force, there is an acceleration and thus an increasing velocity.
When the rope breaks, the tension, t = 0. So, t - fk = 0 - fk = -fk = ma'.
Now, the net force acting on the box is friction in the opposite direction. This force tends to slow the box down from its initial velocity at acceleration, 'a' until its velocity is zero, where it stops. Since the frictional force is constant, the acceleration, a' on the box is thus constant and the box undergoes uniform deceleration until its velocity is zero.
<u>So, the box keeps its speed for a short while, then slows and stops. slows steadily until it stops.</u>
So, the answer is a.