1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
2 years ago
7

Help fast

Physics
1 answer:
AleksAgata [21]2 years ago
3 0

Answer:

C. Newton

Explanation:

hope this helped:)

You might be interested in
1. Given an element's atomic number and mass number, how can you tell the number of protons and neutrons in its nucleus?
DanielleElmas [232]
C. Number of protons = atomic number; number of neutrons = mass number - atomic number
8 0
2 years ago
Read 2 more answers
In a carrom game, a striker weighs three times the mass of the other pieces, the carrom men and the queen, which each have a mas
Mila [183]

Answer:

- The final velocity of the queen is (3/2) of the initial velocity of the striker. That is, (3V/2)

- The final velocity of the striker is (1/2) of the initial velocity of the striker. That is, (V/2)

Hence, the relative velocity of the queen with respect to the striker after collision

= (3V/2) - (V/2)

= V m/s.

Explanation:

This is a conservation of Momentum problem.

Momentum before collision = Momentum after collision.

The mass of the striker = M

Initial Velocity of the striker = V (+x-axis)

Let the final velocity of the striker be u

Mass of the queen = (M/3)

Initial velocity of the queen = 0 (since the queen was initially at rest)

Final velocity of the queen be v

Collision is elastic, So, momentum and kinetic energy are conserved.

Momentum before collision = (M)(V) + 0 = (MV) kgm/s

Momentum after collision = (M)(u) + (M/3)(v) = Mu + (Mv/3)

Momentum before collision = Momentum after collision.

MV = Mu + (Mv/3)

V = u + (v/3)

u = V - (v/3) (eqn 1)

Kinetic energy balance

Kinetic energy before collision = (1/2)(M)(V²) = (MV²/2)

Kinetic energy after collision = (1/2)(M)(u²) + (1/2)(M/3)(v²) = (Mu²/2) + (Mv²/6)

Kinetic energy before collision = Kinetic energy after collision

(MV²/2) = (Mu²/2) + (Mv²/6)

V² = u² + (v²/3) (eqn 2)

Recall eqn 1, u = V - (v/3); eqn 2 becomes

V² = [V - (v/3)]² + (v²/3)

V² = V² - (2Vv/3) + (v²/9) + (v²/3)

(4v²/9) = (2Vv/3)

v² = (2Vv/3) × (9/4)

v² = (3Vv/2)

v = (3V/2)

Hence, the final velocity of the queen is (3/2) of the initial velocity of the striker and is in the same direction.

The final velocity of the striker after collision

= u = V - (v/3) = V - (V/2) = (V/2)

The relative velocity of the queen withrespect to the striker after collision

= (velocity of queen after collision) - (velocity of striker after collision)

= v - u

= (3V/2) - (V/2) = V m/s.

Hope this Helps!!!!

3 0
3 years ago
Read 2 more answers
1. Calculate the average velocity of the following trip. You walk to Pershing Square 58
Gre4nikov [31]

Explanation:

Velocity = displacement / time

v = √((58 m)² + (135 m)²) / (12 min × 60 s/min)

v = 0.20 m/s

7 0
3 years ago
Maria formed when asteroids punctured the moon’s surface, allowing magma to bleed out and create _____.
alekssr [168]
Extensive lava flows
4 0
3 years ago
Read 2 more answers
1. A small light bulb is shining light on a basketball (diameter is 23 cm or 9 inches). The light bulb is 3 m from the closest s
siniylev [52]

Answer:

The size (diameter) of the basketball's shadow on the wall is approximately 53.38 cm

Explanation:

The given parameters of the basketball are;

The diameter of the basketball = 23 cm (9 inches)

The distance of the light bulb from the closest side of the basketball = 3 m

The distance from the ball to the wall = 4 m

The distance from the light source to the center of the ball, d = 3 m + 0.23/2 m = 3.115 m

The angle the light ray makes with the edge of the ball, θ = arctan(0.115/3.115)

Therefore, the ratio of the shadow width divided by 2 to the distance from the light from the wall = 0.115/3.115

The distance from the light from the wall = 3 m + 4 m + 0.23 m = 7.23 m

Therefore;

((The width of the shadow)/2)/(The distance from the light from the wall) = 0.115/3.115

∴ ((The width of the shadow)/2)/(7.23 m) = 0.115/3.115

((The width of the shadow)/2) = 7.23 m × 0.115/3.115 = 16629/62300 m ≈ 0.2669 m = 26.69 cm

The width (diameter) of the shadow on the wall = 2 × 16629/62300 m ≈ 0.5338 m = 53.38 cm

The size (diameter) of the basketball's shadow on the wall ≈ 53.38 cm

4 0
2 years ago
Other questions:
  • A feather is dropped on the moon from a height of 1.40 meters. The acceleration due to gravity on the moon is 1.67 m/s2. Determi
    11·1 answer
  • Practice Exercises Name: : Billy-Joe stands on the Talahatchee Bridge kicking stones into the water below a) If Billy-Joe kicks
    13·1 answer
  • Please help me what defines the above collision as being elastic?
    10·1 answer
  • Usually, when the temperature is increased, what will happen to the rate of dissolving?
    9·1 answer
  • In order to reduce the amount of energy lost due to heat flow, electricity is delivered to our homes using _____.
    13·1 answer
  • How i can change my bad habits and one is i always trust peopñe
    5·2 answers
  • If the x-component of velocity is 27m/s and the y-component of velocity is -23 m/s, what is the resultant vector?
    6·1 answer
  • Which avtivties belongs on top of physical activity pyramid
    15·2 answers
  • Guys can you text here please i have way to many textes on the other one and also remember was told to paste this to other comme
    9·1 answer
  • As the mass of an object in uniform circular motion increases, what happens to the centripetal force required to keep it moving
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!