(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):

Answer:
(A) Pepsin
Explanation:
From the graph it is clear that pepsin is the only enzyme which works in highly acidic condintion in the digestive system.
- less than 7 the liquid is acidic
- above 7 the liquid is basic
- at 7 the liquid is neutral
It has an optimum pH of about 1.5 at which its activity level is 8.5 as shown in graph.
Answer:
15.8 V
Explanation:
The relationship between capacitance and potential difference across a capacitor is:

where
q is the charge stored on the capacitor
C is the capacitance
V is the potential difference
Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.
Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

So we can combine the two equations:

and since we have
V = 71.0 V
k = 4.50
We find the new potential difference:

Answer:
If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Explanation:
The motion of the ceiling is y = Y sinωt
y = 0.05 sin (2 π × 2) t
y = 0.05 sin 4 π t
K = 25 lb/ft × 4 sorings
K = 100 lb/ft
Amplitude of the microscope ![\frac{X}{Y}= [\frac{1+2 \epsilon (\omega/ W_n)^2}{(1-(\frac{\omega}{W_n})^2)^2+(2 \epsilon \frac{\omega}{W_n})^2}]](https://tex.z-dn.net/?f=%5Cfrac%7BX%7D%7BY%7D%3D%20%5B%5Cfrac%7B1%2B2%20%5Cepsilon%20%28%5Comega%2F%20W_n%29%5E2%7D%7B%281-%28%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%29%5E2%2B%282%20%5Cepsilon%20%20%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%7D%5D)
where;


= 
= 4.0124
replacing them into the above equation and making X the subject of the formula:



Therefore; If there is no damping, the amount of transmitted vibration that the microscope experienced is = 