Hnjjjjj hejehtjriwje a wkirrhnemekwhr. Rthejb wine rnrie
This problem is to let you practice using Newton's second law of motion:
Force = (mass) x (acceleration)
-- The airplane's mass when it takes off (before it burns any of its load of fuel) is 320,000 kg.
-- The force available is (240,000 N/per engine) x (4 engines) = 960,000 N.
-- Now you know ' F ' and ' mass '. Use Newton's second law of motion to calculate the plane's acceleration.
Answer:
(1) 0.333 Hz
(2) 4 sec
(3) 2 sec, 0.5 Hz
Explanation:
(1) We have given time period of pendulum is 3 sec
So T = 3 sec
Frequency will be equal to 
(2) Frequency of the pendulum is given f = 0.25 Hz
Time period is equal to 
(3) It is given that a pendulum makes 10 back and forth swings in 20 seconds
So time taken to complete 1 back and forth swings = 
So time period T = 2 sec
Frequency will be equal to 
Hello.
The gaseous state is the more compressible state, because it has the volume of its container.
The liquid state is virtually incompressible, and the solid state compression is very small.
The plasma is another state that has high compression, but in this case the matter is not bound(we don't have the proton in the core of the atom)
Explanation:
Total mass=100+10=110
Total weight=mass×gravitational field strength
=110×10
=1100N
Work done=force×distance
=1100×10
=11000J
<em>Please mark me as brainliest if this helped you!</em>