Answer: The probability that both televisions work is 0.5625 .
The probability at least one of the two televisions does not work is 0.4375.
Step-by-step explanation:
Given : Number of televisions received in shipment= 12
Number of defective televisions received in shipment= 3
Then proportion of defective televisions =
Using binomial probability formula, the probability of getting success in x trials is given by :-
If two televisions are randomly selected, then the probability that both televisions work will be :-
The probability at least one of the two televisions does not work will be :-
Okay, so if 1/3 of a pizza is a serving, you would have to know that 1 pizza contains 3 servings.
Multiply 5*3 for your answer.
5*3= 15
That is 15 servings.
I hope this helped you!
Brainliest answer would be appreciated!
Answer:
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Step-by-step explanation:
Recall that a penny is a money unit. It is created/produced, just like any other commodity. As a matter of fact, almost all types of money or currency are manufactured; with different materials ranging from paper to solid metals.
A group of pennies made in a certain year are weighed. The variable of interest here is weight of a penny.
The mean weight of all selected pennies is approximately 2.5grams.
The standard deviation of this mean value is 0.02grams.
In this context,
* The mean (a measure of central tendency) weight value is the average of the weights of all pennies in the study.
* The standard deviation (a measure of variability or dispersion) describes the lowest and highest any individual penny weight can be. Subtracting 0.02g from the mean, you get the lowest penny weight in the group.
Likewise, adding 0.02g to the mean, you get the highest penny weight in the group.
Hence, the weight of each penny in this study, falls within
[2.48grams - 2.52grams]
Answer:
483
Step-by-step explanation: