Answer:
x = -3 and x = -3/2
Step-by-step explanation:
After writing down the polynomial, split it; put a line between 3x^2 and -18x. Look and 2x^3 + 3x^2 and -18x - 27 separately and factor them both:
p(x) = 2x^3 + 3x^2 <u>- 18x -27</u>
p(x) = x^2(2x+3) <u>-9(2x+3)</u>
Now notice how x^2 and -9 have the same factor (2x+3). That means x^2 and -9 can go together:
p(x) = (x^2 - 9)(2x+3)
Factor it once more because there's a difference of squares:
p(x) = (x+3)(x-3)(2x+3)
Now just plug in whatever makes the each bracket equal 0:
x = -3, x = 3, and x = -3/2
Those are your zeros.
Answer:
I'm not sure what your asking, but, no, all rectangles are parallelograms.
I found this over the internet, and I hope it helps you understand why a rectangle is always a parallelogram, but a parallelogram is not always a rectangle:
It is true that every rectangle is a parallelogram, but it is not true that every parallelogram is not a rectangle. For instance, take a square. It's a parallelogram — it is a quadrilateral with two pairs of parallel faces. But it is also a rectangle — it is a quadrilateral with four right angles.
Answer:
-9/20
Step-by-step explanation:
For the first two terms, all you have to do is multiply the numerators and the denominators, and cancel out the negative, but because there is a -1 after that, the negative sign comes back, although the -1 doesn't really change the number.
Answer:
5
Step-by-step explanation:
2*5=10
10*5=50
Answer:
4.58257
Step-by-step explanation:
That is the square root of 21, so if there's a point about there, then choose it.