Answer:
1,1
2,2
3,3
4,4
5,5
6,6
1,2
1,3
1,4
1,5
1,6
2,1
2,1
2,3
2,4
2,5
2,6
3,1
3,2
3,3
3,4
3,5
3,6
4,1
4,2
4,3
4,4
4,5
4,6
5,1
5,2
5,3
5,4
5,5
5,6
6,1
6,2
6,3
6,4
6,5
count these and mult my two because they can be reversed.
Step-by-step explanation:
Answer:
X=-2 x=1 x=3 and x=-1
Step-by-step explanation:
When the problem asks you to find the zeros all they are asking for is the solution so to solve all you need to do is set each individual piece equal to zero.
Given that the quadratic equation is ![y=-x^{2}-10 x+24](https://tex.z-dn.net/?f=y%3D-x%5E%7B2%7D-10%20x%2B24)
We need to determine the y - value of the vertex.
<u>The x - value of the vertex:</u>
The x - value of the vertex can be determined using the formula,
![x=-\frac{b}{2 a}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7Bb%7D%7B2%20a%7D)
where ![a=-1, b=-10, c=24](https://tex.z-dn.net/?f=a%3D-1%2C%20b%3D-10%2C%20c%3D24)
Substituting these values, we get;
![x=-\frac{(-10)}{2(-1)}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B%28-10%29%7D%7B2%28-1%29%7D)
Simplifying the terms, we get;
![x=-\frac{-10}{-2}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B-10%7D%7B-2%7D)
![x=-5](https://tex.z-dn.net/?f=x%3D-5)
Thus, the x - value of the vertex is -5.
<u>The y - value of the vertex:</u>
The y - value of the vertex can be determined by substituting the x - value of the vertex ( x = -5) in the equation ![y=-x^{2}-10 x+24](https://tex.z-dn.net/?f=y%3D-x%5E%7B2%7D-10%20x%2B24)
Thus, we get;
![y=-(-5)^{2}-10(-5)+24](https://tex.z-dn.net/?f=y%3D-%28-5%29%5E%7B2%7D-10%28-5%29%2B24)
Simplifying the values, we have;
![y=-25+50+24](https://tex.z-dn.net/?f=y%3D-25%2B50%2B24)
![y=49](https://tex.z-dn.net/?f=y%3D49)
Thus, the y - value of the vertex is 49.
Answer:
672 square inches
with area, multiply the side(s) by themselves for a single number, or their following numbers for more than 2 numbers.
Example
- 18in x 18in = 324 square inches
- 4in x 2in x 5in x 9in = 360 square inches
hope this helps!
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1