Answer:

Explanation:
It is given that,
Diameter of cylinder, d = 6.6 cm
Radius of cylinder, r = 3.3 cm = 0.033 m
Acceleration of the string, 
Displacement, d = 1.3 m
The angular acceleration is given by :



The angular displacement is given by :



Using the third equation of rotational kinematics as :

Here, 



Since, 1 rad/s = 9.54 rpm
So,

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.
The solution to this ques is available in the image.
Given,
Force= 1N
Mass= 0.11kg
Time= 5sec
Force= mass X accelaration
Accelaration= velocity/ time
Speed=distance/ time
Hence, the speed is 45 m/s and the distance is 225 m.
To know more about speed and distance problems the link is given below:
brainly.com/question/19610984?
#SPJ4
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
The Electromagnetic ave that is about the size of humans is : A typical micro waves have around 14 inches ( 1.1 meter) in height.
This is very similar to the height of human right before we hit puberty (around 9 - 10 years old)