Answer:
True
Explanation:
East, up, and left all define as a direction.
Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation:
From laws of motion:

Where S is the distance/displacement (as you would call it) which is unknown
v = final velocity which is 0m/s (this is because the car stops)
u = initial velocity which is 36m/s (from the data given)
t = time taken for the distance to be covered and it is 6s
Substitute the values, hence:


But this is merely the distance he travelled in the 6 seconds he was trying to stop the car.
Therefore, the distance between the car and the cows = 160-108
Distance = 52m