1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
3 years ago
11

A map of a trail in a park has a length of 4.5 centimeters from start to finish. The scale on the map states that 2 centimeters

represents 3 kilometers.
What is the actual length of the trail in kilometers?


A) 1.3 kilometers

B) 3 kilometers

C) 6.75 kilometers

D) 9 kilometers
Mathematics
2 answers:
ss7ja [257]3 years ago
6 0

Answer:

A

Step-by-step explanation:

I got a 100%

Kaylis [27]3 years ago
3 0

♡ The Question ♡      

A map of a trail in a park has a length of 4.5 centimeters from start to finish. The scale on the map states that 2 centimeters represents 3 kilometers.  

What is the actual length of the trail in kilometers?  

* ୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*        

♡ The Answer ♡      

C) 6.75 kilometers!  

*୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*        

♡ The Explanation/Step-By-Step ♡    

No Explanation/Step-By-Step provided!    

*୨୧ ┈┈┈┈┈┈┈┈┈┈┈┈ ୨୧*        

♡ Tips ♡        

-No tips provided!

You might be interested in
Do the ordered pairs below represent a relation, a function, both a relation and a function, or neither a relation or a function
tangare [24]

Answer:

Is a relation and a function.

Step-by-step explanation:

Every set of order pairs represent a relation.

Remember that a relation is a function when every element from the domain has a unique corresponding element in the range. In this case

f(-2) = 3

f(2) = 7

f(7) = -12

f(10) = -15

Therefore the relation is a function as well.

4 0
3 years ago
Please help me with this
8090 [49]
This is the graph, the x and y intercept would be (0,0)

5 0
3 years ago
How do you write 1% as a fraction in simplest form
makkiz [27]
1/100 This is because every percent is out of 100.

5 0
4 years ago
Read 2 more answers
Multiply 1/2x5/8 simplest form
lana [24]
1/2 x 5/8 = 5/16 in simplest form
3 0
4 years ago
A 50-gal tank initially contains 10 gal of fresh water. At t = 0, a brine solution
scZoUnD [109]

\huge \mathbb{SOLUTION:}

\begin{array}{l} \textsf{Let }A(t)\textsf{ be the function which gives the amount} \\ \textsf{of the salt dissolved in the liquid in the tank at} \\ \textsf{any time }t. \textsf{ We want to develop a differential} \\ \textsf{equation that, when solved, will give us an} \\ \textsf{expression for }A(t). \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \end{array}

\boxed{ \footnotesize \begin{array}{l} \qquad\quad \quad\Large{\dfrac{dA}{dt} = R_{in} - R_{out}} \\ \\ \textsf{where:} \\ \\ \begin{aligned} \bullet\: R_{in} &= \textsf{rate of the salt entering} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \\ \\ \bullet\: R_{out} &= \textsf{rate of the salt leaving} \\ &= \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{aligned} \end{array}} \\ \\

\begin{array}{l} \textsf{On the problem, the amount of salt in the tank,} \\ A(t), \textsf{changes overtime is given by the differential} \\ \textsf{equation}  \\ \\ \footnotesize A'(t) = \left(\dfrac{4\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{1\ \textsf{lb}}{1\ \textsf{gal}}\right) - \left(\dfrac{2\ \textsf{gal}}{1\ \textsf{min}}\right)\!\!\left(\dfrac{A(t)\ \textsf{lb}}{10 + (4 - 2)t\ \textsf{gal}}\right) \\ \\ \textsf{There's no salt in the tank (fresh water) at the} \\ \textsf{start, so }A(0) = 0. \textsf{ The amount of solution in the} \\ \textsf{tank is given by }10 + (4 -2)t, \textsf{so the tank will} \\ \textsf{overflow once this expression is equal to the total} \\ \textsf{volume or capacity of the tank.} \\ \\ 10 + (4 - 2)t = 50 \\ \\ \textsf{Solving for }t,\textsf{ we get} \\ \\ \implies \boxed{t = 20\textsf{ mins}} \\ \\ A'(t) = 4 - \dfrac{2A(t)}{10 + 2t} \\ \\ A'(t) = 4 - \dfrac{1}{5 + t} A(t) \\ \\ A'(t) + \dfrac{1}{5 + t} A(t) = 4 \\ \\ \textsf{This is a linear ODE with integrating factor} \\ \mu (t) = e^{\int \frac{1}{5 + t}\ dt} = e^{\ln |5 + t|} = 5 + t \\ \\ \textsf{Multiplying this to the ODE, we get} \\ \\ (5 + t)A'(t) + A(t) = 4(5 + t) \\ \\ [(5 + t)A(t)]' = 20 + 4t \\ \\ (5 + t)A(t) = 20t + 2t^2 + C \\ \\ \textsf{Since }A(0) = 0, \textsf{ we get } C = 0. \\ \\ A(t) = \dfrac{2t^2 + 20t}{t + 5} \\ \\ A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{So the function that gives the amount of salt at} \\ \textsf{any given time }t,\textsf{ is given by} \\ \\ \implies A(t) = 2t + 10 - \dfrac{50}{t + 5} \\ \\ \textsf{The amount of salt in the tank at the moment} \\ \textsf{of overflow or at }t = 20\textsf{ mins is equal to} \\ \\ A(20) = 2(20) + 10 - \dfrac{50}{20 + 5} \\ \\ \implies \boxed{A = 48\ \textsf{gallons}} \end{array}

\Large \mathbb{ANSWER:}

\qquad\red{\boxed{\begin{array}{l} \textsf{a. }20\textsf{ mins} \\ \\ \textsf{b. }48\textsf{ gallons}\end{array}}}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

5 0
3 years ago
Other questions:
  • A company sells widgets. The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the
    11·1 answer
  • (6 2/5 + 1 4/5) + 3 1/5
    12·2 answers
  • Identify the radius and center.<br><br> x^2 + y^2 - 2x + 4y - 11 = 0
    8·1 answer
  • Solve 2(x + 1) + 4 = 8
    14·2 answers
  • Simplify -2xy+3x-2xy+3x<br><br> A. 4xy-6x<br><br> B. -4xy+6x<br><br> C. 4xy+6x<br><br> D. 2xy
    13·1 answer
  • 10 POINTS!!!!!
    7·1 answer
  • An ordinary (fair) die is a cube with the numbers through on the sides (represented by painted spots). Imagine that such a die i
    15·1 answer
  • Help me! I cannot figure out how to reverse these.
    5·1 answer
  • Triangles 2.0........
    15·2 answers
  • What is the Probability of flipping a coin and landing on heads (unlikely,likely,Equally likely of certain,or impossible)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!