Answer:
The main difference in these two movements is that the first is a pure swing movement and the followed form a wave travels from the beach
Explanation:
The movement in the two parts is very different, when the surf zone has passed it is in a deeper part of the water where the seabed does not rise much, therefore due to the movement of the waves there is an upward oscillatory movement and descending, in this movement there is no horizontal displacement.
When it is within the southern zone, there is a rapid rise of the sea floor, which generates a horizontal movement, having a traveling wave, therefore your movement is more complicated, you can have some oscillating movement on the axis and, but in addition to this you have a horizontal movement that reaches you towards the beach, forming a Traveling wave.
The main difference in these two movements is that the first is a pure swing movement and the followed form a wave travels from the beach
Answer:
562 miles per hour.
Explanation:
As given in the question, the formula for the maximum speed on a curved road is

Given value of
feet
So the maximum safe speed will be
miles per hour.
Rounding off to the nearest whole number we get the maximum safe speed at the curved road is 562 miles per hour.
<h2>
Hello!</h2>
The answer is 31.67 Amps.
<h2>
Why?</h2>
To solve the problem, we need to use Ohm's Law equation, which states that:

Where,
V, is the voltage (in volts)
I, is the current (in Amps)
R, is the resistance (in Ohms)
We are given the following information:

So, using Ohm's Law equation and substituting the given information, we have:

Hence, we have that the current used by the blender is 31.67Amps.
Have a nice day!
Answer:
M2 = 278.06 kg
Explanation:
We calculate the weight of M1
W=m*g
Where
m: mass (kg)
g: acceleration due to gravity (m/s²)
W₁=288* 9.8= 2822.4 N
Look at the attached graphic
We calculate the x-y components of the weight :
W₁x= 2822.4*sin41° N =1851.66 N
W₁y= 2822.4 *cos41° N = 2130.09 N
We apply Newton's first law for the balance in M1:
Σ Fy=0
Fn-W₁y=0 , Fn: normal force
Fn=W₁y=2130.09N
Friction Force = Ff=μs *Fn = 0.41*2130.09 =873.34 N
Σ Fx=0
T- W₁x- Ff=0
T= 1851.66 + 873.34
T= 1851.66 + 873.34
T=2725 N
We apply Newton's first law for the balance in M2:
Σ Fy=0
T- W₂ =0
W₂ = T = 2725 N
W₂ = M2*g
M2 = W₂/g
M2 = 2725/9.8
M2 = 278.06 kg