Answer:
I think is is
Explanation:
B and C why because i have a gut feeling
Answer:
In biology, cell theory is the historic scientific theory, now universally accepted, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all organisms and also the basic unit of reproduction.
Explanation:
The three tenets to the cell theory are as described below:
All living organisms are composed of one or more cells.
The cell is the basic unit of structure and organization in organisms.
Cells arise from pre-existing cells.
There is no universally accepted definition of life. Some biologists consider non-cellular entities such as viruses living organisms,[1] and thus reasonably disagree with the first tenet. Throughout this article, it will lead you through the history of cell theory, how the discovery of cells was made possible, what the cell theory has become today and background information and history regarding other opposing concepts of cell theory.
Acceleration is how much the velocity changes within a period of time so,
Acceleration= is the change in velocity divided by change in time
your units will be m/s squared
Done I don't know answer of this question or this photo is the answer can you tell me
Power delivered = (energy delivered) / (time to deliver the energy)
Power delivered = (4,000 J) / (0.5 sec)
Power delivered = 8,000 watts
I'm a little surprised to learn that Electro draws his power from the mains. This is VERY good news for Spiderman ! It means that Spiderman can always avoid tangling with Electro ... all he has to do is stay farther away from Electro than the length of Electro's extension cord.
But OK. Let's assume that Electro draws it all from the mains. Then inevitably, there must be some loss in Electro's conversion process, between the outlet and his fingertips (or wherever he shoots his bolts from).
The efficiency of Electro's internal process is
<em>(power he shoots out) / (power he draws from the mains) </em>.
So, if he delivers energy toward his target at the rate of 8,000 watts, he must draw power from the mains at the rate of
<em>(8,000 watts) / (his internal efficiency) . </em>