The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
Salt (NaCl) is an ionic bond that consists of Sodium (Na) which is a metal with positive charge combines with Chlorine (Cl), a nonmetal with a negative charge.
Explanation:
A: C₆H₁₂O₆ + 6H₂O + 6O₂
6CO₂ + 12H₂O = C₆H₁₂O₆ + 6H₂O + 6O₂
Answer:
Relative humidity is low .
Explanation:
The wet bulb reads low temperature because due to low humidity of atmosphere , evaporation of water takes place from the wet bulb which makes the bulb cool and therefore it reads lower temperature . In the process of evaporation , heat equal to latent heat of vaporization is taken from the bulb and it loses temperature.