Pressure has no effect on the solubility of KNO3 in water. This is because it is solid in liquid type of solution. In solid in liquid type of solution, solid is solute (minor component), liquid is solvent (major component). For solid in liquid type of solutions, solubility is independent of pressure.
On other hand, pressure has a pronounced effect on the solubility of gas in liquid type solutions. In such system, gas is solute (minor component) and liquid is solvent (major component). Example of such solution is aerated water. Herein, CO2 is dissolved in water. In such gas in liquid type of solutions, solubility increases with increasing pressure.
Explanation:
Mg₃N₂ is the formula of magnesium nitride.
Answer:
The parts of an atom are<em><u> protons, electrons, and neutrons.</u></em>
A proton is positively charged and is located in the center or nucleus of the atom.
Electrons are negatively charged and are located in rings or orbits spinning around the nucleus.
The number of protons and electrons is always equal.
You can use grams to moles and moles to grams. In your case just grams to moles. So since you're given grams, you would divide that by the molar mass of CO2 because that's how many grams are in one mole. The mass for Carbon is 12.0104 g/mol and Oxygen it's 15.9994 g/mol so to find the molar mass you would add 12.0104 + (2*15.9994) which gives you a molar mass of 44.0095 g/mol. You divide your given mass (132g) by the molar mass, so there's 2.9993 moles or approximately 3 moles in 132 g of CO2.
Answer:
characteristic properties of an element are the defining properties of that element and it does not change with quantity of the element used.
Explanation:
the amount or the quantity of the element used does not affect the characteristic property of the element. it does not matter is the if the amount or the quantity of the element used in the reaction is large or the small the characteristic properties like boiling point, melting point, density, thermal conductivity, etc remain the same or remain constant.