1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
15

KIIS FM broadcasts at 102.7 MHz, what is the wavelength of that radio wave?

Physics
1 answer:
marysya [2.9K]3 years ago
3 0

Answer:

2.92 m

Explanation:

As we know, frequency × Wavelength = Speed of light

so here frequency of 102.7 MHz can be written as 102.7× 10⁶ Hz..

So Lambda (wavelength) = 3×10⁸/ 102.7 × 10⁶ which gives 2.92 metres or 2.92 × 10¹⁰ Å

You might be interested in
Un coche inicia un viaje de 450 km a las ocho de la mañana con una velocidad media de 90 km/h. ¿A qué hora llegará a su destino?
Artyom0805 [142]

Answer:

Llegara a su destino a la 1:00 pm

Explanation:

Si el coche va a 90 km/h buscamos un numero q al multiplicarlo por 90 nos de 450. Entonces 90×5 = 450, si hacemos la cuenta desde las ocho de la mañana mas las 5 horas del viaje terminaria llegando a su destino a la 1:00 pm.

5 0
3 years ago
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
1000 kg has 50, 000 joules of kinetic energy. what is it's speed?
kicyunya [14]
The answer is 36 kilometers per hour, or 10 meters per second.
7 0
3 years ago
In a collision, a 25.0 kg mass moving at 3.0 m/s transfers all of its momentum to a 5.0 kg mass.
nadezda [96]

Answer:

Explanation:

The momentum of the 25 kg mass is

p=mv

p=25kg*3m/s= 75kg*m/s

If this whole momentum of the object is transferred to the 5.0 kg object then according to the law of conservation of momentum, the momentum of the 25.0 kg object must be transferred to the 5.0 kg object:

75kg*m/s = 5.0kg*v

v=\dfrac{75}{5}

\boxed{v=15m/s}

8 0
3 years ago
A 500-g lump of clay is dropped onto a 1-kg cart moving at 60 cm/s. The clay is moving downward at 30 cm/s just before l dith t
viktelen [127]

Answer:

The speed of the cart and clay after the collision is 50 cm/s .

Explanation:

Given :

Mass of lump , m = 500 g = 0.5 kg .

Velocity of lump , v = 30 cm/s .

Mass of cart , M = 1 kg .

Velocity of cart , V = 60 cm/s .

We know by conservation of momentum :

mv+MV=(m+M)v'

Here , v' is the speed of the cart and clay after the collision .

Putting all value in above equation .

We get :

0.5\times 30+1\times 60=(0.5+1)\times v'\\\\v'=\dfrac{15+60}{1.5}\\\\v'=50\ cm/s

Hence , this is the required solution .

3 0
3 years ago
Other questions:
  • Consider the electronic elements that are cooled by forced convection in Problem 6.31. The cooling system is designed and tested
    10·1 answer
  • What is magnetisim? What things are magnets?
    12·1 answer
  • Does the North Pole receive more daylight hours during Winter or Summer?
    11·2 answers
  • How can you determine the type of radiation an atom emits as its nucleus decays
    8·1 answer
  • PLZ HELP
    9·1 answer
  • The longer the lever, the greater the
    14·1 answer
  • A satellite of mass m is in a circular orbit of radius R2 around a spherical planet of radius R1 made of a material with density
    6·1 answer
  • Two pounds of water vapor at 30 psia fill the 4-ft3 left chamber of a partitioned system. The right chamber has twice the volume
    12·1 answer
  • Insect A moves 5.0 m/min and insect B moves
    12·1 answer
  • ASAP ASAP ASAP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!