<span>The skier will transform their gravitational energy into mostly kinetic energy (with a minor amount transformed into heat from the friction of the skis across the snow and air friction). Once the skier hits the snowdrift, their kinetic energy is transferred into the snow which moves when they strike it due to the kinetic energy that is now in the snow. Along with again a minor amount of heat energy transferred as they move through the snowdrift.</span>
The sun provides a handy benchmark for describing other stars. The mass of this solar system's sun gives us a unit for measuring other stars' masses.
Answer:
I believe its Gas to Solid :)
Explanation:
Answer:
8.56 m/s2
Explanation:
Using law of energy conservation while taking into account of the rotational and translation kinetic energy, when the solid cylinder rolls down the incline we have the potential energy converted to kinetic energy:


where m is the mass,
is the moments of inertia of the solid cylinder
is the angular speed of the cylinder



So if you plot a liner chart of h vs
and get a slope of 6.42 then that means 3/(4g) = 6.42 so 
The gravitational acceleration on this planet is 8.56 m/s2