The combined momentum of the passengers is 5000 kgm/s.
<h3>Combined momentum of the passenger</h3>
The combined momentum of the passengers is calculated as follows;
P = mv1 + mv2
where;
- m is mass of the passengers
- v1 is velocity of the first passenger
- v2 is velocity of the second passenger
P = m(v1 + v2)
P = 5000(-1 + 2)
P = 5000 kgm/s
Thus, the combined momentum of the passengers is 5000 kgm/s.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
 
        
             
        
        
        
Answer:
a) a = 0.477 m/s^2
b) u = 0.04862
Explanation:
Given:-
- The rotational speed of the turntable N = 33 rev/min
- The watermelon seed is r = 4.0 cm away from axis of rotation.
Find:-
 (a) Calculate the acceleration of the seed, assuming that it does not slip. (b) What is the minimum value of the coefficient of static friction between the seed and the turntable if the seed is not to slip
Solution:-
- First determine the angular speed (w) of the turntable.
                    w = 2π*N / 60
                    w = 2π*33 / 60
                    w = 3.456 rad/s
- The watermelon seed undergoes a centripetal acceleration ( α ) defined by:
                    α = w^2 * r
                    α = 3.456^2 * 0.04
                    α = 0.477 m / s^2
- The minimum friction force (Ff) is proportional to the contact force of the seed.
- The weight (W) of the seed with mass m acts downwards. The contact force (N) can be determined from static condition of seed in vertical direction.
                    N - W = 0
                    N = W = m*g
- The friction force of the (Ff) is directed towards the center of axis of rotation, while the centripetal force acts in opposite direction. The frictional force Ff = u*N = u*m*g must be enough to match the centripetal force exerted by the turntable on the seed.
                     Ff = m*a
                     u*m*g = m*a
                     u = a / g
                     u = 0.477 / 9.81
                     u = 0.04862
 
        
             
        
        
        
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
        
             
        
        
        
A
Explanation:
The earth is spherical. So it's middle part is bulgjng outside. So more sunlight will be incident on the latitude near the equator. This will heat the air and it will rise up. This will cause high pressure difference and polar disturbances. 
I hope this satisfies you. I hope u will follow me and make this the brainliest answer.