Answer:
1. 1 s = 1 x 10⁶ μs
2. 1 g = 0.001 kg
3. 1 km = 1000 m
4. 1 mm = 1 x 10⁻³ m
5. 1 mL = 1 x 10⁻³ L
6. 1 g = 100 dg
7. 1 cm = 1 x 10⁻² m
8. 1 ms = 1 x 10⁻³ s
Explanation:
1.
1 x 10⁻⁶ s = 1 μs
(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs
<u>1 s = 1 x 10⁶ μs</u>
2.
1000 g = 1 kg
1 g = 1/1000 kg
<u>1 g = 0.001 kg</u>
3.
<u>1 km = 1000 m</u>
<u></u>
4.
<u>1 mm = 1 x 10⁻³ m</u>
<u></u>
5.
<u>1 mL = 1 x 10⁻³ L</u>
<u></u>
6.
1 x 10⁻² g = 1 dg
(1 x 10⁻² x 10²) g = 1 x 10² dg
<u>1 g = 100 dg</u>
<u></u>
7.
<u>1 cm = 1 x 10⁻² m</u>
<u></u>
8.
<u>1 ms = 1 x 10⁻³ s</u>
Answer:
a counterclaim
Explanation:
authors purpose is what an author wrote somthing for
opinion is someones thoughts or "side" on a argument
an arguement is a battle of opinions if that makes sense
Answer:1200
Explanation:
Given data
Upper Temprature
Lower Temprature 
Engine power ouput
Efficiency of carnot cycle is given by





rounding off to two significant figures

Answer:
See explanation
Explanation:
The acceleration due to gravity on an object is independent of the mass of the object. This is so because, the acceleration due to gravity depends only on the radius of the earth and the mass of the earth.
As a result of this, all objects are accelerated to the same extent and should reach the ground at the same time when released from a height as long as other forces other than gravity are not at work.
Answer:
The minimum time to reach the target is 2156s
Explanation:
Check attachment