Answer:
Explanation:
Energy is what makes change happen and can be transferred form one object to another. ... Power is the rate at which energy is transferred. It is not energy but is often confused with energy. The watt is the most commonly used unit of measure for power.
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Answer:
D,B,C,A,C
Explanation:
I believe that is the correct answers but it is unclear. I don't think the key for the second last question would let the current flowing so the bulb would be off.
The answer for the following problem is mentioned below.
The option for the question is "A" approximately.
- <u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>
Explanation:
Given:
Spring constant (k) = 240 N/m
amount of the compression (x) = 0.40 m
To calculate:
Elastic potential energy (E)
We know;
<em>According to the formula;</em>
E =
× k × x × x
<u>E = </u>
<u> × k ×(x)²</u>
where;
E represents the elastic potential energy
K represents the spring constant
x represents amount of the compression in the string
So therefore,
Substituting the values in the above formula;
E =
× 240 × (0.40)²
E =
× 240 × 0.16
E =
× 38.4
E = 19.2 J or approximately 20 J
<u><em>Therefore the elastic potential energy of the string is 20 J.</em></u>