There are 12 boys and 21 girls for a total of 33 students
I’m not sure if this is right!
Answer: The blue whale's weight is 150 times heavier than the narwhal's weight.
Step-by-step explanation:
Given: Weight of Blue whale = 
Weight of Narwhal = 
Number of times blue whale's weight is heavier than the narwhal's weight = 
![=\dfrac{3\times10^5}{2\times10^3}\\\\=1.5\times10^{5-3}\ \ \ [\dfrac{a^m}{a^n}=a^{m-n}]\\\\=1.5\times10^2\\\\=1.5\times100=150](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B3%5Ctimes10%5E5%7D%7B2%5Ctimes10%5E3%7D%5C%5C%5C%5C%3D1.5%5Ctimes10%5E%7B5-3%7D%5C%20%5C%20%5C%20%5B%5Cdfrac%7Ba%5Em%7D%7Ba%5En%7D%3Da%5E%7Bm-n%7D%5D%5C%5C%5C%5C%3D1.5%5Ctimes10%5E2%5C%5C%5C%5C%3D1.5%5Ctimes100%3D150)
Hence, the blue whale's weight is 150 times heavier than the narwhal's weight.
62.5% of 8 is 5 so it's b
Answer:
(2a +b)·(13a^2 -5ab +b^2)
Step-by-step explanation:
The factorization of the difference of cubes is a standard form:
(p -q)^3 = (p -q)(p^2 +pq +q^2)
Here, you have ...
so the factorization is ...
(3a -(a -b))·((3a)^2 +(3a)(a -b) +(a -b)^2) . . . . substitute for p and q
= (2a +b)·(9a^2 +3a^2 -3ab +a^2 -2ab +b^2) . . . . simplify a bit
= (2a +b)·(13a^2 -5ab +b^2) . . . . . . collect terms
Answer:
Step-by-step explanation: