1kg of water has greater internal energy compared to 1g of water because 1kg of water has more mass.
Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
<span> Assuming constant volume, if you increase </span>temperature<span>, the </span>pressure<span> will increase. So it is B: increasing</span>
F (Fluorine) is in column (group/family) VIIA, or the "halogens". When you see the halogens (Fluorine, Chlorine, Bromine, and Iodine) in combination with a metal, each halogen atom present will carry a -1 charge. We can see that the atom has no charge, so the metal must cancel out the negative charges brought by the two fluorine atoms.
(Charge on m) + 2*(charge on fluorine) = 0
(Charge on m) + 2*(-1) = 0
(Charge on m) - 2 = 0
Charge on m ion = +2
Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.