Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.
The best answer is "<span>High temperatures increase the activation energy of the reaction."
The Haber process is an exothermic reaction at room temperature. This means that the reaction actually favors the reverse reaction, especially when the temperature is increased. So why increase the reaction temperature?
The reason for this is that nitrogen is a very stable element. Therefore, more energy is needed to overcome the slow rate of reaction. So the reaction temperature must be low enough to favor a forward reaction, but high enough to speed up the reaction.</span>
Answer: 0.84 g
Explanation:

Given: moles of iron = 0.015
Molar mass of iron = 56 g/mol

Thus 0.84 g of iron participated in the chemical reaction.
In order the words are:
living, nonliving, biotic, plants, animals, abiotic, moisture, temperature, producers, nonliving, autotrophs, consumers, eating, and heterotrophs.
Answer:
<h2>Molarity = 7 mol / L</h2>
Explanation:
Since the mass of NaCl and it's volume has been given we can find the molarity by using the formula
<h3>

</h3>
where
C is the molarity
m is the mass
M is the molar mass
v is the volume
From the question
v = 0.5 L
m = 205 g
We must first find the molar mass and then substitute the values into the above formula
M( Na) = 23 , M( Cl) = 35.5
Molar mass of NaCl = 23 + 35.5 =
58.5 g/mol
So the molarity of NaCl is

C = 7.00854
We have the final answer as
<h3>Molarity = 7 mol / L</h3>
Hope this helps you