The correct answer is B) 9 m.
The measure of the sector of circle R is 32π/9 m. The measure of the central angle is 80°. This means that the sector is 80/360 = 2/9 of the circle. The area of a circle is given by A=πr², so the area of the sector is A=2/9πr². To verify this, 2/9π(4²) = 2/9π(16) = 32π/9.
Using this same formula for circle S, we will work backward to find the radius:
18π = 2/9πr²
Multiply both sides by 9:
18*9π = 2πr²
162π = 2πr²
Divide both sides by 2π:
162π/2π = 2πr²/2π
81 = r²
Take the square root of both sides:
√81 = √r²
9 = r
Answer:

Step-by-step explanation:
Subtract the 4 from 9
Answer:
520 feet
Step-by-step explanation:
The easiest way to visualize this problem is to sketch a quick diagram.
For this problem, you are given an angle and the length of the side of a triangle. If you look at the diagram, you'll see that the length given is the opposite side of the angle given. For this situation, that means you will use the sine function (refer to SOH-CAH-TOA acronym). Then you plug in the given values and solve for x.
Hope this helps!
Answer:
10 cuadrados
Step-by-step explanation:
Si uno de los lados de rectangulo es de 4cm entonces el lado parallelo tambien es de 4cm. Eso nos da 8cm del perimetro y nos quedan los otros dos lados que tienen la misma medida. Entonces dividimos el resto del perimetro por 2.
28 - 8 = 20cm
20cm / 2cm = 10cm
Ahora que tenemos todas las medidas podemos multiplicar el largo por el ancho para calcular el area del rectangulo
10cm * 4cm = 40
el cuadrado de 2cm tendra un area de
2cm * 2cm = 4
Ahora simplemente dividimos el area del rectangulo por el area del cuadrado para saber cuantos cuadrados necesitamos para armar ese rectangulo
40
/ 4
= 10 cuadrados
Answer:
The slope of f(x) is equal to the slope of g(x).
Step-by-step explanation:
we know that
The formula to calculate the slope between two points is equal to
step 1
Find the slope of the function f(x)
we have the points
(0,-1) and (3,1)
substitute in the formula
step 2
Find the slope of the function g(x)
take two points of the given table
(0,2) and (3,4)
substitute in the formula
step 3
Compare the slopes

therefore
The slope of f(x) is equal to the slope of g(x).