Explanation:
When m=<em>mass</em>
G=<em>a</em><em>c</em><em>c</em><em>e</em><em>l</em><em>e</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>d</em><em>u</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>gravity</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>H</em><em>=</em><em>h</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>
<em>U</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em>u</em><em>l</em><em>a</em>
<em>M</em><em>g</em><em>h</em>
<em>(</em><em>M</em><em>=</em><em>6</em><em>, </em><em>g</em><em>=</em><em>10</em><em>,</em><em>h</em><em>=</em><em>?</em><em>) </em>
6×10×h
=60joules
Answer:
Explanation:
Explanation: total displacement =3√2m. and total distance covered=14m. I hope this is right and helps u.
Answer:
21870.3156 N
Explanation:
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 1.6 m/s²
Equation of motion

The acceleration of the craft should be 1.02234 m/s²

Weight of the craft

Thrust

The thrust needed to reduce the velocity to zero at the instant when the craft touches the lunar surface is 21870.3156 N
Answer:
The time taken to travel is, t = 12 minutes
Explanation:
Given data,
The speed of the car, v = 60 km/h
The distance of travel, d = 12 km
The time taken for the travel is t = ?
The speed is defined as the distance divided by the time taken to travel. The formula for speed is,
v = d/t
∴ t = d/v
t = 12 km / 60 km/h
t = 0.2 h
t = 12 minutes
Hence, the time taken to travel is, t = 12 minutes.
(a) Zero
The maximum efficiency (Carnot efficiency) of a heat engine is given by

where
is the low-temperature reservoir
is the high-temperature reservoir
For the heat engine in the problem, we have:


Therefore, the maximum efficiency is

(b) Zero
The efficiency of a heat engine can also be rewritten as

where
W is the work performed by the engine
is the heat absorbed from the high-temperature reservoir
In this problem, we know

Therefore, since the term
cannot be equal to infinity, the numerator of the fraction must be zero as well, which means
W = 0
So the engine cannot perform any work.