Answer:
the answer is 20 neutrons
Explanation:
Answer:
heat pressure, electron degeneracy, neutron degeneracy, and nothing
Explanation:
Main Sequence Star: It is a star in which nuclear fusion is happening in the core of the star. Hydrogen molecules fuse together to generate Helium. This nuclear fusion generates outward gas pressure and radiation pressure which balances the inward gravity thus creating an equilibrium which keeps the stars in shape.
White dwarf: It is the end stage of a medium sized star like the Sun. Outer layers of the star are thrown in the form a shell/bubble leaving a small and dense core in the center called as white dwarf. This core consists of carbon and oxygen. Nuclear fusion doesn't occur in the core of white dwarfs. The inward gravity is balanced by the electron degeneracy pressure. Thus these stars will keep on radiating the remaining heat and will turn in to a black dwarf at the end.
Neutron Star: This is the end stage of a supermassive star (1-3 times the mass of the Sun). At the last stage of the life the core collapses. In these stars the inward gravity is so huge that the pressure overcomes the electron degeneracy pressure and crushes together the electron and proton to form neutron. The neutron then stops the collapse and balances the inward gravity.
Black Hole: This is the end stage of a hyper massive stars weighing more than 3 times the mass of the Sun. The inward gravitational force is so huge that even the neutrons are not able to stop the collapse the core. thus the mass of the star collapses into a very small area of immense gravity. There is nothing that can balance this inward gravity.
Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
![E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%3D%20gravity%5Bm%2Fs%5E%7B2%7D%20%5D%5C%5Cm%20%3D%20mass%20%5Bkg%5D%5C%5Cm%3D%20%5Cfrac%7BE_%7Bp%7D%20%7D%7Bg%2Ah%7D%5C%5C%20m%3D%20%5Cfrac%7B100%7D%7B9.81%2A10%7D%5C%5C%5C%5Cm%3D%201.01%5Bkg%5D%5C%5C%5C%5C)
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
![P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\](https://tex.z-dn.net/?f=P_%7Be%7D%20%3Dm%2Ag%2Ah%5C%5CP_%7Be%7D%20%3D1.01%2A9.81%2A5%5C%5C%5C%5CP_%7Be%7D%20%3D%2050%20%5BJ%5D%5C%5C)
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]