Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.
Answer:
See the explanation below.
Explanation:
A lever is a simple machine that changes the magnitude and direction of the force applied to move an object. Minimizes the force needed to lift the object.
By means of the following image, we can see the principle of operation of a lever.
The load can be moved thanks to the force multiplied by the distance to the fulcrum.
Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:
![F = \frac{kq_1q_2}{r^2}\\](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7Bkq_1q_2%7D%7Br%5E2%7D%5C%5C)
where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,
![F = \frac{(9\ x\ 10^9\ N.m^2/C^2)(1.6\ x\ 10^{-19}\ C)(1.4\ C)}{(0.9\ m)^2}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%289%5C%20x%5C%2010%5E9%5C%20N.m%5E2%2FC%5E2%29%281.6%5C%20x%5C%2010%5E%7B-19%7D%5C%20C%29%281.4%5C%20C%29%7D%7B%280.9%5C%20m%29%5E2%7D)
<u>F = 2.49 x 10⁻⁹ N</u>
Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°
Answer: 6.47m/s
Explanation:
The tangential speed can be defined in terms of linear speed. The linear speed is the distance traveled with respect to time taken. The tangential speed is basically, the linear speed across a circular path.
The time taken for 1 revolution is, 1/3.33 = 0.30s
velocity of the wheel = d/t
Since d is not given, we find d by using formula for the circumference of a circle. 2πr. Thus, V = 2πr/t
V = 2π * 0.309 / 0.3
V = 1.94/0.3
V = 6.47m/s
The tangential speed of the tack is 6.47m/s