The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Each capacitor carry the same charge 'q'.
Discussion:
The voltage from the battery is distributed equally across all of the capacitors when they are linked in series. The three identical capacitors' combined voltage is computed as follows:
= V₁ +V₂ +V₃
This voltage may also be calculated using capacitance and charge;
V = Q/ C
= V₁ +V₂ +V₃
Provided that the total charge is 'q', hence the total voltage can be expressed as:
= (Q/C₁) + (Q/C₂) + (Q/C₃) = Q(1/C₁ +1/C₂ +1/C₃)
Therefore from the above explanation, it is concluded that each and every capacitor carry same charge 'q'.
Learn more about the capacitor here:
brainly.com/question/17176550
#SPJ4
A mercury filled balloon would fall faster then water. Mercury is heavier.
Answer:Technician A
Explanation:
Technician A statement is correct as
The battery is required to start the vehicle which, in effect, rotates the alternator at sufficient speed to keep the battery charged. This means if the battery is low it is not possible to start the vehicle and thus we are unable to test the alternator.
That is the battery is pre-requisite to test the alternator. So the battery must be at least a 75 % charge to test the alternator.