Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant = 8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg
Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
C the runners feet pushing against the ground describes the acceleration toward the finish line
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)