Answer:
Muscular endurance is how many times you can move a weight without getting tired.
Muscular strength is the amount force you can put out.
Hello!
The slope of the line given by graphing pressure vs 1/Volume at constant temp for one mole of gas will give you the value for nRT from equation PV=nRT
So set nRT=slope and take the constant number mole of gas and the constant temp and solve for R the universal gas constant. You arm for pressure and litters for volume to get R in units of L*atm/mol*k
Hope this helps you! Thanks!!
Incomplete question as the unit of volume is not written correctly.So the complete question is here:
A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm³?
Answer:

Explanation:
Given data
Mass m=240g
Volume V=89.0 cm³
To find
Density d
Solution
If rock displaces 89.0 cm³ of water means volume of rock is also 89cm³
So

According to the Jefferson lab, "The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)"
Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.