Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
The type of medium affects a sound wave as sound travels with the help of the vibration in particles. As different mediums have different amount and size of particles, for example, the speed of sound is faster through solid than liquid as solids have closely packed particles whereas liquids are loosely packed. Therefore the vibration is quicker in solids than liquids.
Hope it helps you! :)
Answer: 115m. Displacement can be taken from the distance between the initial point and the final point. In this case,the displacement is 115m.