<u>Answer:</u> The mass of second isotope of indium is 114.904 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the mass of isotope 2 of indium be 'x'
Mass of isotope 1 = 112.904 amu
Percentage abundance of isotope 1 = 4.28 %
Fractional abundance of isotope 1 = 0.0428
Mass of isotope 2 = x amu
Percentage abundance of isotope 2 = [100 - 4.28] = 95.72 %
Fractional abundance of isotope 2 = 0.9572
Average atomic mass of indium = 114.818 amu
Putting values in equation 1, we get:
Hence, the mass of second isotope of indium is 114.904 amu
Hypothesis because law don’t make sense and theory is for something that already has data behind it. In this case you don’t do it’s not hypothesis
The element cobalt can form compounds in two different oxidation states, +2 and +3.
The +2 state is more common.
The ion Co2+ (aq) is pink.
Other compounds of cobalt(II), which include both anhydrous Co2+ and complex ions, are commonly blue.
If an aqueous solution contains both cobalt(II) and chloride ions, the blue ion CoCl42- forms, in equilibrium with the pink Co2+ (aq) ion.
<span>CoCl42- (aq) <===========> Co2+ (aq) + 4Cl1-(aq)</span>
The presence of oxidizing acids; heavy-metal salts, sulfur, and ammonia; and a number of sulfur and ammonia compounds can cause corrosion to set in. Water that comes from a well is much more likely to contain these materials and put copper lines in jeopardy—but it can occur in the civic water system as well.
Copper corrodes at insignificant rates when used in areas with unpolluted air, non-oxidizing acids, and water. However, it happens more rapidly with the presence of road salt, ammonia, sulfur, oxidizing acids
Acidic substances react with the surface of copper, causing it to tarnish and corrode almost instantly. This corrosion is highly soluble, leading to the presence of toxic copper salts in the food. This is why it is not recommended to use copper vessels for foods high in acidity, such as milk, wine, or vinegar.