Answer:
The molecular formula is C12H18O3
Explanation:
Step 1: Data given
The empirical formula is C4H6O
Molecular weight is 212 g/mol
atomic mass of C = 12 g/mol
atomic mass of H = 1 g/mol
atomic mass of O = 16 g/mol
Step 2: Calculate the molar mass of the empirical formula
Molar mass = 4* 12 + 6*1 +16
Molar mass = 70 g/mol
Step 3: Calculate the molecular formula
We have to multiply the empirical formula by n
n = the molecular weight of the empirical formula / the molecular weight of the molecular formula
n = 70 /212 ≈ 3
We have to multiply the empirical formula by 3
3*(C4H6O- = C12H18O3
The molecular formula is C12H18O3
Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa
Answer:
four covalent bonds
Explanation:
A carbon atom would form 4 covalent bonds.
For a covalent bond to be formed, an atom would share its valence electrons with another. In this process, each atom would require unpaired electrons for this bond to be formed. The number of available unpaired electrons would represent the number of electrons needed to complete the outer energy level of the atom.
In a carbon atom, we have no lone pair of electrons and 4 unpaired electrons. When these 4 electrons are shared with those of other atoms, they produce a complete octet which perfectly mimics the noble gases.
Evaporation is a physical phenomenon, as with the action of sunlight, the atoms that make up water (H2O) will stick to a greater state of agitation, causing their separation and subsequent evaporation. In more pressure, more energy would be required (heat, sunlight) to cause the separation. There is no change in the properties of the element, and the process is reversible.
hope his helps!.