Answer:
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Explanation:
Writing electronic configuration of any element you should know atomic number of that element ,
and also electrons are filling according to their energy level and first electron is filled in the lower energy orbital
and it follows n+1 rule if n+1 is same for two orbital electron will go first in the lowest value of n.
writing electronic configuration of ion can be done like first for their neutral atom and then add or remove electron it will make things easy because there are also some eception case their you may do wrong.
![AU : [Rn] 5f^3 6d^1 7s^2](https://tex.z-dn.net/?f=AU%20%3A%20%5BRn%5D%205f%5E3%206d%5E1%207s%5E2)
remove three electron from outer most shell of AU
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Answer:

Explanation:
Hello there!
In this case, since the thermodynamic definition of the Gibbs free energy for a change process is:

It is possible to plug in the given H, T and S with consistent units, to obtain the correct G as shown below:

Best regards!
Answer:
Explanation:
MnO₂(s) + 4 HCl(aq) = MnCl₂(aq) + 2 H₂O(l) + Cl₂
87 g 22.4 x 10³ mL
volume of given chlorine gas at NTP or at 760 Torr and 273 K
= 175 x ( 273 + 25 ) x 715 / (273 x 760 )
= 179.71 mL
22.4 x 10³ mL of chlorine requires 87 g of MnO₂
179.4 mL of chlorine will require 87 x 179.4 / 22.4 x 10³ g
= 696.77 x 10⁻³ g
= 696.77 mg .
The name transition metal refers to the position in the periodic table of elements. The transition elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between group 2 (2A) elements and group 13 (3A) elements.
Answer:
wavelength = 0.534×10⁻¹⁶ m
Explanation:
Given data:
Frequency of wave = 5.62 ×10²⁴ Hz
Wavelength = ?
Solution:
Speed of photon = wavelength × frequency
wavelength = speed of photon / frequency
Now we will put the values in formula:
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ Hz
Hz = s⁻¹
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ s⁻¹
wavelength = 0.534×10⁻¹⁶ m