<span>he density of a material is defined as its mass per
unit volume. In this example, each volume of water is different and
therefore has a specific and unique mass. The mass of water is expressed
in grams (g) or kilograms (kg), and the volume is measured in liters (L), cubic centimeters (cm 3), or milliliters (mL).</span>
D. 18 x 10^23 is the total number of atoms in 1.0 mole of CO2
The chemical reaction between the reactants:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Explanation:
We have the following chemical reaction:
3 AgNO₃ (aq) + FeCl₃ (aq) → 3 AgCl (s) + Fe(NO₃)₃ (aq)
Complete ionic equation:
3 Ag⁺ (aq) + 3 NO₃⁻ (aq) + Fe³⁺ (aq) + 3 Cl⁻ (aq) → 3 AgCl (s) + Fe³⁺ (aq) + 3 NO₃⁻ (aq)
We remove the spectator ions and we get the net ionic equation:
Ag⁺ (aq) + Cl⁻ (aq) → AgCl (s)
where:
(aq) - aqueous
(s) - solid
Learn more about:
net ionic equation
brainly.com/question/7018960
#learnwithBrainly
Answer:
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons.
To give 33.6 dm³ hydrogen gas at STP, 18.06 x 10²³ atoms of Na must react completely.
<h3>What is Mole concept ?</h3>
A mole is a unit of measurement used to measure the amount of any fundamental entity (atoms, molecules, ions) present in the substance.
As according to the given equation, 2 moles (ie 12.04 x 10²³ atoms) of Na-atoms produces 1 mole (22.4 ltr) of H₂-gas.
Hence, to produce 33.6 ltr (equivalent to 33.6 dm³) of H₂-gas produced by ;
= 12.04 x 10²³ atoms of Na / 22.4 ltr of H₂-gas x 33.6 ltr
= 18.06 x 10²³ atoms of Na
Hence, To give 33.6 dm³ hydrogen gas at STP, 18.06 x 10²³ atoms of Na must react completely.
Learn more about Mole concept here ;
brainly.com/question/20483253
#SPJ1