Answer:
here you go
Explanation:
Why do your lights actually come on almost instantaneously? ... Wiring the house in parallel does not make a difference – there is no current flowing through the light bulb when the switch is off no matter how the house is wired. If there were a current already, the light would be on!
Answer:
Vf = 210 [m/s]
Av = 105 [m/s]
y = 2205 [m]
Explanation:
To solve this problem we must use the following formula of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 0 (released from the rest)
g = gravity acceleration = 10 [m/s²]
t = time = 21 [s]
Vf = 0 + (10*21)
Vf = 210 [m/s]
Note: The positive sign for the gravity acceleration means that the object is falling in the same direction of the gravity acceleration (downwards)
The average speed is defined as the sum of the final speed plus the initial speed divided by two. (the initial velocity is zero)
Av = (210 + 0)/2
Av = 105 [m/s]
To calculate the distance we must use the following equation of kinematics

44100 = 20*y
y = 2205 [m]
Answer:

Explanation:
according to snell's law

refractive index of water n_w is 1.33
refractive index of glass n_g is 1.5


now applying snell's law between air and glass, so we have


![\beta = sin^{-1} [\frac{n_g}{n_a}*sin\alpha]](https://tex.z-dn.net/?f=%5Cbeta%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_g%7D%7Bn_a%7D%2Asin%5Calpha%5D)
we know that 

Answer:
Explanation:
Given that,
Kinetic energy of an automobile is 2300J
K.E = 2300J
The formula for kinetic energy is
K.E = ½mv²
So, if the speed of the automobile is increased by 6, what is the kinetic energy
Now v' = 6v.
The mass of the automobile is constant.
Therefore, the kinetic energy is
K.E' = ½mv'²
Where v' = 6v
K.E' = ½m(6v)²
K.E' = ½m × 36v²
K.E' = 36 × ½mv²
Where, from above ½mv² = 2300J
Then,
K.E' = 36 × 2300 = 82,800J
The kinetic energy of the automobile when it increase it's speed is 82,800J
That symbol represents a source of DC, usually a battery.
The zig-zag line represents a resistor, and the two little circles
connected by a short line represent a switch in the closed position.,