3,89,988 cm/min is the linear velocity
Given,
Diameter of CD = 12 cm
So, Radius of CD = 6 cm
CD is spinning at 10350 rev/min
Firstly , convert rev/min into rad/min
1 rev = 2π radians
10350 rev/min = 10350 × 2π
= 64998 rad/min
Formula used,
where,
is the Linear velocity
is the radius
is the angular velocity
= 6 cm × 64998rad/min
= 3,89,988 cm/min
Thus, linear velocity for any edge point of a 12-cm-diameter CD (compact disc) spinning at 10,350 rev/min is 389988 cm/min.
Learn more about Angular speed here brainly.com/question/540174
#SPJ4
Answer:
A jet plane flying straight and at level at constant speed
Explanation:
The<em> inertial frame </em>of reference is a frame of reference in which all <em>Newton law is valid</em> ie Newton second law of motion and therefore newton first law of motion holds good. <em>The frame of reference does not accelerate.</em>
All the object that is in the frame of reference are at rest or moving with constant rectilinear motion with constant velocity unless acted upon by any force.
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
<span>Igneous rocks which form by the crystallization of magma at a depth within the Earth are called intrusive rocks. Intrusive rocks are characterized by large crystal sizes, i.e., their visual appearance shows individual crystals interlocked together to form the rock mass. hope that helped</span>