To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Divide 360000 by 200 to get 1800 seconds, or half of hour.
The kinetic energy will be greatest at the bottom of the swing motion.
The potential energy will be greatest at the highest position of the swing.
Potential energy is the energy stored in an object or system due to the position or placement of its parts. However, it is not affected by the external environment of the object or system. Kinetic energy, on the other hand, is the energy of the particles of an object or system in motion.
In an oscillating pendulum, the potential energy and gravitational kinetic energy are constantly changing. The potential and kinetic energies are maximal at extreme and intermediate positions, respectively.
Learn more about the pendulum in
brainly.com/question/14759840
#SPJ4
Answer:
B. Make the work you do feel easier
Answer:
As with any wave the speed of sound depends on the medium in which it is propagating.
Explanation: