1. Frequency: 
The frequency of a light wave is given by:

where
is the speed of light
is the wavelength of the wave
In this problem, we have light with wavelength

Substituting into the equation, we find the frequency:

2. Period: 
The period of a wave is equal to the reciprocal of the frequency:

The frequency of this light wave is
(found in the previous exercise), so the period is:

Answer:
f(x)=a(x - h)2 + k
Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.
The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):
x - h = 0
-2 - h = 0
-h = 2
h = -2
So the function ends up looking like:
f(x)=a(x - (-2))2 + 2
Subtracting a negative cancels the signs out to make a positive:
f(x)=a(x + 2)2 + 2Explanation:
Answer:
1.75atm
Explanation:
According to Boyle's law, the pressure P of a fixed mass of gas is inversely proportional to it's volume V provided that the temperature remains constant.

This implies the following;
Provided temperature is kept constant.
Given;

From equation (1), we can write;

Since all the units are consistent, there is no need for conversion.
Answer:
Since you haven't provided any choices, then the answer is "Free Fall Motion."
Explanation:
In order to learn more about the answer, let's discuss what free fall motion is.
Free Fall- In Physics, this refers to any body motion that is acted upon solely by <u>"gravity."</u> The acceleration in free fall is always downward and there's the absence of other forces. Take note that the<em> acceleration should be the same and is independent of the object's mass. </em>This acceleration is called "acceleration due to gravity."
Gravity- This refers to the force that pulls any object towards the center of the earth.
<u>Examples of Objects in Free Fall Motion</u>
1. A ball dropped at the top of a building.
2. Dropping a coin from a table.
The ball and the coin are both in free fall motion because they are being pulled by gravity towards the earth. Their acceleration is also constant and there are no other forces acting upon them.
Reflect parallel of the principal axis