Answer:
a.) The main scale reading is 10.2cm
b.) Division 7 = 0.07
c.) 10.27 cm
d.) 10.31 cm
e.) 10.24 cm
Explanation:
The figure depicts a vernier caliper readings
a.) The main scale reading is 10.2 cm
The reading before the vernier scale
b.) Division 7 = 0.07
the point where the main scale and vernier scale meet
c.) The observed readings is
10.2 + 0.07 = 10.27 cm
d.) If the instrument has a positive zero error of 4 division
correct reading = 10.27 + 0.04 = 10.31cm
e.) If the instrument has a negative zero error of 3 division
correct reading = 10.27 - 0.03 = 10.24cm
The formula that is applicable here is E = kQ/r^2 in which the energy of attraction is proportional to the charges and inversely proportional to the square of the distance. In this case,
kQ1/(r1)^2 = kQ2/(r2)^2 r1=l/3, r2=2l/3solve Q1/Q2
kQ1/(l/3)^2 = kQ2/(2l/3)^2 kQ1/(l^2/9) = kQ2/(4l^2/9)Q1/Q2 = 1/4
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
It is a chemical change and a physical change
It can be found in granitic and basaltic rock.