-- The wavelength and the amplitude were described in my answer to your previous question.
-- A "compression" is a place where the wave is <em>compressed</em>. It's the darker section of the wave in the picture, where the wavelength is temporarily shorter, so several waves are all bunched up (compressed) in a small time.
-- A "rarefaction" is exactly the opposite of a "compression". It's a place where the wave gets more "<em>rare</em>" ... the wavelength temporarily gets longer, so that several waves get stretched out, and there are fewer of them in some period of time. The arrow in the picture points to a rarefaction.
Bacteria <span>are very small </span>organisms<span>.</span>
Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 
First the velocity drops to zero in 1.2 secs. In those seconds it went upwards for 7.2 m, then it went from 87.2 to 0m. x-x0=v0*t+1/2*g*t^2 ergo t=sqrt(2x/g) that is 4.1761 s. Finally the total time required is 5.3761 s
Answer:
48
Explanation:
you basically divide 1200 into 25