The answer is 0.25 g/cm3
The equation for finding density is mass divided by volume.
Therefore,
12 grams/ 49 cm3= 0.24489795918367 gram/cubic centimeter
you would then round this to the nearest significant figure which is the number of significant numbers you have and the highest amount of sig figs present in this equation is two sig figs. That means that you would round your answer, becasue it has a zero before the decimal which doesn't count as a significant figure, to the nearest hundredth which would be 0.25 and then you add your value after it which is g/cm3
Answer:
The correct option is C) The number of protons is equal to the number of electrons.
Explanation:
Atoms are made up of particles called protons, neutrons, and electrons. Protons and neutrons are in the center of the atom and form the nucleus, while electrons surround the nucleus. Electrons have a negative charge. The charge of the protons is positive and finally, the neutrons have no charge.
If the atom has no charge, this means that the total charge of the atomic nucleus, which is positive due to the presence of the protons, is equal to the negative charge of the electrons, so that it cancels out.
So, <u><em>the correct option is C) The number of protons is equal to the number of electrons.</em></u>
Volume of O2 : 168 L
<h3>Further explanation</h3>
Given
Reaction
2 KClO3 (s) → 2 KCl (s) + 3 O2 (g)
5 moles of KCIO3
Required
volume of O2
Solution
From the equation, mol O2 :
= 3/2 x moles KClO3
= 3/2 x 5 moles
= 7.5 moles
Assumed at STP( 1 mol = 22.4 L) :
= 7.5 x 22.4 L
= 168 L
Answer:
The appropriate option will be Option A (unequal sharing of electrons in a covalent bond).
Explanation:
- A polar bond seems to be a covalent bond amongst two or even more atoms where there is an uneven distribution of the electrons surrounding the connection.
- This induces a small electrical magnetic dipole in the molecules whereby the end becomes generally favorable and another is mildly controversial.
The other choices aren't relevant to the situation presented. The answer above would be appropriate.