Impulse = mass * change in velocity (change in momentum) = Force * change in time
So, F=(m*change in v)/(change in t)
F=(60*20)/0.5=2400N
Therefore the magnitude of the average force exerted on the cyclist by the haystack is 2.4*10^3N
D. Empty Space
Imagine an apple in the center of a football field. Pretend like that apple is the nucleus of an atom. The electrons would be at the end-zones. The universe is just a butttonne of empty space
Answer:
The acceleration of
is 
Explanation:
From the question we are told that
The mass of first block is 
The angle of inclination of first block is 
The coefficient of kinetic friction of the first block is 
The mass of the second block is 
The angle of inclination of the second block is 
The coefficient of kinetic friction of the second block is 
The acceleration of
are same
The force acting on the mass
is mathematically represented as

=> 
Where T is the tension on the rope
The force acting on the mass
is mathematically represented as


At equilibrium

So

making a the subject of the formula

substituting values 
=> 
Answer:
the energy possessed by a body by virtue of its position relative to others, stresses within itself, electric charge, and other factors.
hope this helps
have a good day :)
Explanation: