Answer:
Explanation:
1. We use the conservation of momentum for before the raining and after. And also we take into account that in 0.5h the accumulated water is
100kg/h*0.5h = 50kg
2. the momentum does not conserve because the drag force of water makes that the boat loses velocity
3. If we assume that the force of the boat before the raining is
where we have assumed that the acceleration of the boat is 1m/s{2} just before the rain starts
And if we take the net force as
where we take v=1m/s because we are taking into account tha velocity just after the rain stars.
I hope this is useful for you
regards
Answer:
6.20×10⁴ V/m
Explanation:
The magnitude of electric field is:
E = √(Eₓ² + Eᵧ²)
where Eₓ = ∂φ/∂x and Eᵧ = ∂φ/∂y.
φ = 1.11 (x² + y²)^-½ − 429x
Eₓ = -0.555 (x² + y²)^-(³/₂) (2x) − 429
Eᵧ = -0.555 (x² + y²)^-(³/₂) (2y)
Evaluating at (0.003, 0.003):
Eₓ = -44034 V/m
Eᵧ = -43605 V/m
The magnitude is:
E = 61971 V/m
Rounded to three significant figures, the strength of the electric field is 6.20×10⁴ V/m.
Answer:
Magnitude
Explanation:
Scalar quantitys have no direction only a size aka magnitude
The answer for this would be "B".
Answer:
In other words, Tension (Ft) = Force of gravity (Fg) = m × g. Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Explanation: