To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
T<span>he correct unit for electrical power is "watt".
</span>
That<span>’s actually the unit that measures the rate per time that electric energy is transferred.</span>
<span>
</span>
<span>Have a nice day! :)</span>
Answer: 25.38 m/s
Explanation:
We have a straight line where the car travels a total distance
, which is divided into two segments
:
(1)
Where 
On the other hand, we know speed is defined as:
(2)
Where
is the time, which can be isolated from (2):
(3)
Now, for the first segment
the car has a speed
, using equation (3):
(4)
(5)
(6) This is the time it takes to travel the first segment
For the second segment
the car has a speed
, hence:
(7)
(8)
(9) This is the time it takes to travel the secons segment
Having these values we can calculate the car's average speed
:
(10)
(11)
Finally:
Answer:
B-flood
Explanation:
The Sunshine State is famous all around the world for many great things but also is famous because of a big array of natural disasters.From hurricanes, tropical storms, tornadoes, to fires and floods many natural disasters in Florida affect the lives of residents.
Answer:
waving
Explanation:
it waves go to a beach and see water doesn't rest it waves