Answer:
1.327363 m/s
0.00090243 m
Explanation:
u = Initial velocity
v = Final velocity
m = Mass of flea
Energy

The velocity of the flea when leaving the ground is 1.327363 m/s

The flea will travel 0.00090243 m upward
Answer:

Explanation:
We have:
diameter of the wheel, 
weight of the wheel, 
mass of hanging object to the wheel, 
speed of the hanging mass after the descend, 
height of descend, 
(a)
moment of inertia of wheel about its central axis:




Answer:
37.34372 kg
Explanation:
m = Mass
= Change in temperature
1 denotes water
2 denotes copper
c = Heat capacity
Heat is given by

In this case the heat transfer will be equal

Mass of copper block is 37.34372 kg
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
The freezing point of the water is 0 C , and it equals to 273 K
Then, To convert from Kelvins degrees to Celsius degrees we use the relation

Also,
