Answer:
m = 65.637 g
Explanation:
Heat = 0.612 kJ = 612 J ( Converting to J by multiplying by 1000)
Initial Temperature = 30.°C
Final Temperature = 51°C
Temperature change = Final Temperature - Initial Temperature = 51 - 30 = 21°C
Mass = ?
The relationship between these quantities is given by the equation;
H = mCΔT
where c = 0.444 J/g°C
Inserting the values in the equation;
612 = m * 0.444 * 21
m = 612 / (0.444 * 21)
m = 65.637 g
ionic bond:
Bond formed when an atom donates its electron and other atom receives those electrons.
polar covalent:
Bond formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Nonpolar covalent:
Bond formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Metallic:
Formed between two metals.
So the bond between :
Phosphorus and chlorine-polar covalent bond as it is formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Potassium and oxygen -ionic bond as here potassium donates its electron and oxygen receives those electrons
Fluorine and fluorine -Non polar covalent bond as formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Copper and aluminum-metallic bond as Formed between two metals.
Carbon and fluorine -polar covalent bond as it is formed by equal sharing of electrons between both the atoms and there is an electronegativity difference between the two atoms.
Carbon and hydrogen --Non polar covalent bond as formed by equal sharing of electrons between both the atoms and there is no electronegativity difference between the two atoms.
Aluminum and oxygen--ionic bond as here aluminum donates its electron and oxygen receives those electrons
Silver and copper --metallic bond as Formed between two metals.
Answer:
The answer is in the explanation.
Explanation:
A buffer is defined as the aqueous mixture of a weak acid and its conjugate base or vice versa. Buffers are able to avoid the pH change of a solution when strong acid or bases are added (As NaOH).
Based on the experiment, it is possible that the solution Z was a buffer and Y another kind of solution. For this reson, pH of the solution Y changes much more than the pH of solution Z changes despite the amount of NaOH added is the same in both solutions.
It is B. One single bond and one triple bond.