The Second Law of Thermodynamics<span> says that processes that involve the transfer or conversion of heat energy are irreversible.</span><span> ... The First </span>Law of Thermodynamics<span> states that energy cannot be created or destroyed; the total quantity of energy in the universe stays the same.</span>
Answer:- 
Explanations:- Lattice energy depends on two factors, charge and size.
High charge and small size gives higher lattice energy where as low charge and bigger size gives lower lattice energy.
in LiCl, NaCl and KCl, the anion is same and also the charges for Li, Na and K are also same. The deciding factor here is the size of cations. Since the size increases as we move down a group, the order of size of these three atoms is Li<Na<K.
The order of lattice energy is exactly opposite as it's increases as the size decreases.
Now, if we look at magnesium chloride and strontium chloride then again the anion is common but the metals have higher charge as compared to the alkali metals(Li, Na and K). So, lattice energy values must be higher for these two compounds. If we compare Mg and Sr then size of Mg is smaller and so the lattice energy would be greater for this.
Hence, the increasing order of lattice energy is
.
Answer:
No, tobacco companies do not reuse tobacco in their cigarettes, I also did some extra research to make sure I wasn’t giving a false answer
Thanks!
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>