Kinetic energy of an object can be expressed in terms of its mass m and velocity v as:
KE = 1/2 * m* v²
Thus higher the velocity, greater will be the Kinetic energy. Now, as the box moves along a ramp from top to bottom, its velocity increases and so does the KE. Hence, kinetic energy is maximum at the bottom
Ans B) at the bottom
Atomic number (Z) of tungsten is 74
Mass number (A) of tungsten is 184
Now:
Atomic number of an element = Number of protons = Number of electrons
Mass number = Number of Protons + Number of neutrons
In the case of tungsten
Total Number of electrons = 74
Jeffrey has already added 21 electrons
Number of electrons needed = 74 - 21 = 53
Ans (D) 53 more electrons are needed to complete the neutral atom of tungsten.
Answer:
<u>One lone-Pair is present in Ammonia</u>
<u></u>
Explanation:
The number of valence electron in N = 5
The number of Valence electron in H = 1
The formula of ammonia = NH3
Total valence electron in ammonia molecule = 5 +3(1) = 5+3 = 8
The lewis structure suggest that :
Nitrogen completes its octet by sharing the electron pair with 3 hydrogen atoms.
3 electron of Nitrogen are involved in sharing with Hydrogen
So,<u><em> remaining two electron are left non-bonded</em></u> . Hence they exist as lone- pair
So, there is only 1 lone pair in the ammonia molecule .
The shape of NH3 is bent according to VSEPR theory . This is so because the presence of 1 lone pair causes more repulsion and occupy more space.
Thus the lone pair is changing the shape of the ammonia molecule . It also increase the dipole moment of the molecule , which gives polarity to it.
Answer:
The number of lines possible for SO2 is 3
Explanation:
The following Procedure should be followed when calculating the number of vibrational modes:-
- Identify if the given molecule is either linear or non-linear
- Calculate the number of atoms present in your molecule
- Place the value of n in the formula and solve.
SO2 is a non-linear molecule because it contains a lone pair which causes the molecule to bent in shape hence, The mathematical formula for calculating the number of non-linear molecule in a infrared region is (3n - 6) here n is the number of atoms in molecule.
hence for Sulphur Dioxide (SO2), n will be 3
<u> Therefore, The number of lines possible for SO2 is (3*3) - 6 = 3</u>
Answer:
42.65g
Explanation:
Given parameters:
Mass of K = 4g
Unknown: Mass of KCl
Solution:
Complete equation of the reaction:
2K + Cl₂ → 2KCl
To solve this problem, we know that the reactant in short supply is potassium K and this dictates the amount of products that would be formed. The chlorine gas is in excess and we can't use it to determine the amount of product that would form.
Now, we work from the known to the unknown. Since we know the mass of K given in the reaction, we can simply find the molar relationship between the reacting potassium and the product. We simply convert the mass to mole and compare to the product. From there we can find the mass of KCl that would be produced.
Calculating number of moles of K
Number of moles = 
Number of moles of K =
= 0.103mol
From the given reaction equation:
2 moles of K will produce 2 moles of KCl
Therefore 0.103mol of K will produce 0.103mol of KCl
To find the mass of KCl produced,
Mass of KCl = number of moles of KCl x molar mass
Molar mass of KCl = 39 + 35.5 = 74.5gmol⁻¹
Mass of KCl = 0.103 x 74.5 = 42.65g